$3^{2} + 4^{2} = 5^{2}$ $10^{2} + 11^{2} + 12^{2} = 13^{2} + 14^{2}$ $21^{2} + 22^{2} + 23^{2} + 24^{2} = 25^{2} + 26^{2} + 27^{2}$

Beyond Standard Model of Electromagnetism

Jan Rak

Jan Rak October 3, 2023

The day science begins to study non-physical phenomena, it will make more progress in one decade than in all the previous centuries of its existence NIKOLA TESLA

$$\phi^2 - \phi = 1$$

 $\rho^{i\pi} + 1 = 0$

$$F_{n} = \frac{2}{\sqrt{5}} (-i)^{n-1} \sin \left[n \left(\frac{\pi}{2} - i \ln \phi \right) \right]$$

 $=\pi$

 $\sum_{n=-\frac{1}{12}}$

Proud generation of 21st century

Scientists Confirm Einstein's Theory again, GW, BH...

Standard Model

Although very impressive

- Seems to have limited practical implications.
- Greatest WRONG theory in the history of science*

Limitations:

- Strong CP problem
- Hierarchy problem
- Neutrino oscillations
- GTR \times QM incompatibility

*Chad Orzel, Forbes, 2017

Standard Model

Although very impressive

- Seems to have limited practical implications.
- Greatest WRONG theory in the history of science[†]

Limitations:

- No over unity possible
- No superluminal propagation
- No longitudinal, scalar....

[†]Chad Orzel, Forbes, 2017

21st Century – NO OVERUNITY All modern technology based on

- ElectroMagnetism (iPhone, E-cars...)
- Quantum Physics (semiconductors, Qbits....)

Coefficient Of Performance (COP) $COP = \frac{Q_{Out}}{Work} < 1$

On the other hand - Solar Panels $COP \ge 10$

Fig. 10. Daily variation of COP_{p/t} of the PV-SAHP system for different condenser supply water temperature.

Prohibitted term "over unity" - kind of irony...

Current paradigm

theory is unshakable. Born 150 years ago. There is nothing to add, right?

Back to 19th century

CEM theory has been completed about 150 years ago James-Clerk-Maxwell (1831-1879)

- 1. Gauss El $\vec{\nabla} \cdot \vec{E} = rac{
 ho}{arepsilon_0}$ 2. Gauss Mg $\vec{\nabla} \cdot \vec{B} = 0$
- 3. Faraday $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

4. Ampère

"A dynamical theory of the electromagnetic field" *Philosophical* Transactions of the Royal Society, vol. 155, pp. 459–512, 1865.

 $ec{
abla} imes ec{B} = \mu_0 \left(ec{J} + ec{arepsilon_0} rac{\partial ec{E}}{\partial t}
ight)$

Maxwell Original Theory

Maxwell's field equations:

- Formulated in Quaternion Algebra (later).
- 20 eqs. for 20 unknowns.
- Displacement current controversy.
- Admits scalar fields solutions.

That's why ME theory was largely ignored. Until Heinrich Hertz, in 1888, has proven an existence of RF waves.

- Hertz Transverse elemag Waves (TEM).
- Tesla Scalar Longitudinal Waves (SLW).

Maxwell Original Theory

Maxwell wrote

$$p' = p + \frac{\partial f}{\partial t}$$
$$q' = q + \frac{\partial g}{\partial t}$$
$$r' = r + \frac{\partial h}{\partial t}$$

Modern Notation

$$\vec{J}_{\text{tot}} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \qquad \in \mathbb{C}(2D)$$

Maxwell Quaternion notation

$$\mathfrak{Y} = \mathfrak{R} + \frac{\partial}{\partial t}\mathfrak{D} \qquad \in \mathbb{H}(4D)$$

 $\tilde{q} = a + i \cdot b + j \cdot c + k \cdot d$, where $a, b, c, d \in \mathbb{R}$ and $i^2 = j^2 = k^2 = ijk = -1$ and ij = -ji = jk = -kj...

\mathbb{H} too complex for Maxwell's contemp.

Quaternions mathematics \rightarrow New Electrodynamics.

Overlooked by "mankind". Vector calculus, arose as a result of the tendency of simplified calculations in \mathbb{H} .

Dequaternionization or vectorization

$$\tilde{q} = a + \underbrace{i \cdot b + j \cdot c + k \cdot d}_{\text{OD}}$$

3D space: i,j,k ortogon.

then "magic" $\sqrt{-1}$ abandoned \rightarrow birth of vectors

$$\vec{V} = a \cdot \vec{x} + b \cdot \vec{y} + c \cdot \vec{z}$$

Maxwell—Heaviside Equations Gibbs and Heaviside[‡] re-expressed original ME in the modern vector form. Now we have

- CEM and STR are NOT GENERALIZATION of lower order theory – Newtonian physics. No invariance wrt Galilean trf. in the low relative speed limit !?
- ② CEM is over-parametrized. Eight field equations for six unknowns.
- Icrentz force law violates Newton's Third Law.
- ④ Electrodynamic energy-momentum 4/3 problem.
- GED and CEM are inconsistent. Force field vs potential field. Aharonov-Bohm effect.
- Sagnac Effect, Maxwell-Lodge Effect, The Josephson effect...

[‡]O. Heaviside, Electromagnetic theory, vol. I. The Electrician Publishing, 1893.

Paradigm shift?

There are many attempts to rectify e.g. broken Galilean symmetry \rightarrow Extended Classical Electromagnetism.

- Neo-Hertzian Theory (e.g. *T.E. Phipps, "Old Physics for New"*)
- Bi-quaternion formulations (e.g. A. Waser "Application of Bi-Quaternions in Physics")
- Extended CEM (e.g. K.J. van Vlaenderen. "General Classical Electrodynamics")
- Weber's Relational ElectroMag. (e.g. A. Assis "Weber's Electrodynamics " Kluwer Academic Publishers, 1994)

1) Are Maxwell-Heaviside and Einstein STR covering theories?

Very natural requirement is that in the low-speed limit NEW becomes to same as OLD!

CME invariance wrt Galilean trf.

Galilean Transformation (GT)

$$t' = t$$
(1a)
r' = r - v t. (1b)

Spatial and temporal derivatives:

$$\nabla' = \nabla \qquad (2a)$$

$$\frac{d}{dt'} = \frac{d}{dt} \qquad (2b)$$

$$\frac{\partial}{\partial t'} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \qquad (2c)$$

 ∇ is differential operator $\nabla = (\partial_x, \partial_y, \partial_z)$.

All it stems from a Faraday's observation

Faraday observed

$$\oint \vec{E} \mathbf{d} \, \vec{l} = \frac{\mathbf{d} \Phi}{\mathbf{d} t} = \frac{\mathbf{d}}{\mathbf{d} t} \iint \vec{B} \cdot \mathbf{d} \vec{S}.$$

Everybody assumes that one can replace the last term with partial derivative

$$\frac{\partial}{\partial t} \iint \vec{B} \cdot \mathbf{d}\vec{S}.$$

But this is exactly the term which spoils th GT invariance.

Neo-Hertzian theory

The main reason why the GT invariance is broken is the use of partial instead of total derivatives. See e.g. *T.E. Phipps, "Old Physics for New"* Faraday law:

$$\vec{\nabla}\times\vec{E}=-\frac{\partial\vec{B}}{\partial t}$$

become

$$ec{
abla} imes ec{E} = -rac{\mathrm{d}ec{B}}{\mathrm{d}t}$$

then, however, "spacetime symmetry" is broken

$$\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial ict}\right) \rightarrow \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial ict} + (\vec{v} \cdot \nabla)\right)$$

Fist-order invariance of Special Relativity Lorentz trf.

$$t' = \gamma(t - \frac{\beta x}{c})$$
 (3a)
 $x' = \gamma(x - \beta ct)$ (3b)

 $\beta = v/c$, $\gamma = 1/\sqrt{1-\beta^2}$ and c is the speed of light. The low-speed limit comes from The Maclaurin expansion of the γ -factor

$$\gamma|_{\beta \ll c} = 1 + \frac{1}{2}\beta^2 + \frac{3}{8}\beta^4 + O(\beta^6)$$
(4)

while neglecting terms of $O(\beta^2)$ mation (neglecting $O(\beta^2)$), the time coordinate transformation yields

$$t' = \left(t - \frac{vx}{c^2}\right)$$

Fist-order invariance of Special Relativity time interval between these events can be written as

$$\Delta t' = \left(\Delta t - \frac{v\Delta x}{c^2}\right) \tag{5}$$

It is always possible to identify a pair of events for which the difference in spatial coordinates, Δx , is sufficiently large such that the term involving Δx dominates over the Δt term.

Galilean transformation (t' = t), which implies that simultaneous events are always simultaneous in all reference frames. In contrast, the Lorentz transformation in the $\beta \ll 1$ limit, asserts the simultaneous events in one frame are are never simultaneous in any other reference frames.