\qquad
Beyond Standard Model of Electromagnetism

Jan Rak

NAMITECH

$$
e^{i \pi}+1=0
$$

$$
\sum_{n=1}^{\infty} n=-\frac{1}{12}
$$

The day science begins to study non-physical phenomena, it will make more progress in one decade than in all the previous centuries of its existence Nikola Tesla

$$
\phi^{2}-\phi=1
$$

Proud generation of 21st century

Scientists Confirm Einstein's Theory again, GW, BH...

Standard Model

Although very impressive

- Seems to have limited practical implications.
- Greatest WRONG theory in the history of science*

Limitations:

- Strong CP problem
- Hierarchy problem
- Neutrino oscillations
- GTR \times QM incompatibility

Standard Model

Although very impressive

- Seems to have limited practical implications.
- Greatest WRONG theory in the history of science ${ }^{\dagger}$

Limitations:

- No over unity possible
- No superluminal propagation
- No longitudinal, scalar....

21st Century - NO OVERUNITY

All modern technology based on

- ElectroMagnetism (iPhone, E-cars...)
- Quantum Physics (semiconductors, Qbits....)

Coefficient Of Performance (COP)

$$
\mathrm{COP}=\frac{Q_{\text {Out }}}{\text { Work }_{\text {ln }}}<1
$$

On the other hand - Solar Panels COP ≥ 10

J. Ji et al. I Solar Energy 82 (2008) 43-52

Fig. 10. Daily variation of $\mathrm{COP}_{\mathrm{p} / \mathrm{t}}$ of the PV-SAHP system for different condenser supply water temperature.
Prohibitted term "over unity" - kind of irony...

Current paradigm

- GTR and Quantum Field Theories.
- Next is STR and QM.
- Elmag. Theo. - mother of all.

The mother of all - Classical ElectroMagnetism (CEM) theory is unshakable. Born 150 years ago. There is nothing to add, right?

Back to 19th century

CEM theory has been completed about 150 years ago James-Clerk-Maxwell (1831-1879)
Maxwell-Heaviside Eqs in SI units

1. Gauss El $\quad \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}$
2. Gauss Mg $\quad \vec{\nabla} \cdot \vec{B}=0$
3. Faraday

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

4. Ampère

$$
\vec{\nabla} \times \vec{B}=\mu_{0}\left(\vec{J}+\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}\right)
$$

"A dynamical theory of the electromagnetic field" Philosophical Transactions of the Royal Society, vol. 155, pp. 459-512, 1865.

Maxwell Original Theory

Maxwell's field equations:

- Formulated in Quaternion Algebra (later).
- 20 eqs. for 20 unknowns.
- Displacement current controversy.
- Admits scalar fields solutions.

That's why ME theory was largely ignored. Until Heinrich Hertz, in 1888, has proven an existence of RF waves.

- Hertz - Transverse elemag Waves (TEM).
- Tesla - Scalar Longitudinal Waves (SLW).

Maxwell Original Theory

Maxwell wrote

$$
\begin{aligned}
p^{\prime} & =p+\frac{\partial f}{\partial t} \\
q^{\prime} & =q+\frac{\partial g}{\partial t} \\
r^{\prime} & =r+\frac{\partial h}{\partial t}
\end{aligned}
$$

Modern Notation

$$
\vec{J}_{\text {tot }}=\vec{J}+\frac{\partial \vec{D}}{\partial t} \quad \in \mathbb{C}(2 D)
$$

Maxwell Quaternion notation

$$
\mathfrak{Y}=\mathfrak{R}+\frac{\partial}{\partial t} \mathfrak{D} \quad \in \mathbb{H}(4 D)
$$

$\tilde{q}=a+i \cdot b+j \cdot c+k \cdot d$, where $a, b, c, d \in \mathbb{R}$ and
$i^{2}=j^{2}=k^{2}=i j k=-1 \quad$ and $\quad i j=-j i=j k=-k j \ldots$

HI too complex for Maxwell's contemp.

Quaternions mathematics \rightarrow New Electrodynamics.
Overlooked by "mankind". Vector calculus, arose as a result of the tendency of simplified calculations in \mathbb{H}.

Dequaternionization or vectorization

$$
\tilde{q}=a+\underbrace{i \cdot b+j \cdot c+k \cdot d}_{\text {3D space: } \mathrm{ij}, \mathrm{k} \text { k ortogon. }}
$$

then "magic" $\sqrt{-1}$ abandoned \rightarrow birth of vectors

$$
\vec{V}=a \cdot \vec{x}+b \cdot \vec{y}+c \cdot \vec{z}
$$

Maxwell-Heaviside Equations

 Gibbs and Heaviside \ddagger re-expressed original ME in the modern vector form. Now we have(1) CEM and STR are NOT GENERALIZATION of lower order theory - Newtonian physics. No invariance wrt Galilean trf. in the low relative speed limit !?
(2) CEM is over-parametrized. Eight field equations for six unknowns.
(3) Lorentz force law violates Newton's Third Law.
(4) Electrodynamic energy-momentum $4 / 3$ problem.
(5) QED and CEM are inconsistent. Force field vs potential field. Aharonov-Bohm effect.
(6) Sagnac Effect, Maxwell-Lodge Effect, The Josephson effect...

[^0]
Paradigm shift?

There are many attempts to rectify e.g. broken Galilean symmetry \rightarrow Extended Classical Electromagnetism.

- Neo-Hertzian Theory (e.g. T.E. Phipps, "Old Physics for New")
- Bi-quaternion formulations (e.g. A. Waser "Application of Bi-Quaternions in Physics")
- Extended CEM (e.g. K.J. van Vlaenderen. "General Classical Electrodynamics")
- Weber's Relational ElectroMag. (e.g. A. Assis "Weber's Electrodynamics " Kluwer Academic Publishers, 1994)

1) Are Maxwell-Heaviside and Einstein STR

covering theories?

Very natural requirement is that in the low-speed limit NEW becomes to same as OLD!

CME invariance wrt Galilean trf.

Galilean Transformation (GT)

$$
\begin{align*}
t^{\prime} & =t \tag{1a}\\
\mathbf{r}^{\prime} & =\mathbf{r}-\mathbf{v} t \tag{1b}
\end{align*}
$$

Spatial and temporal derivatives:

$$
\begin{align*}
\nabla^{\prime} & =\nabla \tag{2a}\\
\frac{\mathrm{d}}{\mathrm{dt} t^{\prime}} & =\frac{\mathrm{d}}{\mathrm{~d} t} \tag{2b}\\
\frac{\partial}{\partial t^{\prime}} & =\frac{\partial}{\partial t}+\mathrm{v} \cdot \nabla
\end{align*}
$$

∇ is differential operator $\nabla=\left(\partial_{x}, \partial_{y}, \partial_{z}\right)$.

All it stems from a Faraday's observation

Faraday observed

$$
\oint \vec{E} \mathrm{~d} \vec{l}=\frac{\mathrm{d} \Phi}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t} \iint \vec{B} \cdot \mathrm{~d} \vec{S} .
$$

Everybody assumes that one can replace the last term with partial derivative

$$
\frac{\partial}{\partial t} \iint \vec{B} \cdot \mathrm{~d} \vec{S}
$$

But this is exactly the term which spoils th GT invariance.

Neo-Hertzian theory

The main reason why the GT invariance is broken is the use of partial instead of total derivatives. See e.g. T.E. Phipps, "Old Physics for New" Faraday law:

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

become

$$
\vec{\nabla} \times \vec{E}=-\frac{\mathrm{d} \vec{B}}{\mathrm{~d} t}
$$

then, however, "spacetime symmetry" is broken

$$
\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial i c t}\right) \rightarrow\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial i c t}+(\vec{v} \cdot \nabla)\right)
$$

Fist-order invariance of Special Relativity

$$
\begin{align*}
t^{\prime} & =\gamma\left(t-\frac{\beta x}{c}\right) \tag{3a}\\
x^{\prime} & =\gamma(x-\beta c t) \tag{3b}
\end{align*}
$$

$\beta=v / c, \gamma=1 / \sqrt{1-\beta^{2}}$ and c is the speed of light. The low-speed limit comes from The Maclaurin expansion of the γ-factor

$$
\begin{equation*}
\left.\gamma\right|_{\beta \ll c}=1+\frac{1}{2} \beta^{2}+\frac{3}{8} \beta^{4}+O\left(\beta^{6}\right) \tag{4}
\end{equation*}
$$

while neglecting terms of $O\left(\beta^{2}\right)$ mation (neglecting $O\left(\beta^{2}\right)$), the time coordinate transformation yields

$$
t^{\prime}=\left(t-\frac{v x}{c^{2}}\right)
$$

Fist-order invariance of Special Relativity

 time interval between these events can be written as$$
\begin{equation*}
\Delta t^{\prime}=\left(\Delta t-\frac{v \Delta x}{c^{2}}\right) \tag{5}
\end{equation*}
$$

It is always possible to identify a pair of events for which the difference in spatial coordinates, Δx, is sufficiently large such that the term involving Δx dominates over the Δt term.

> Galilean transformation $\left(t^{\prime}=t\right)$, which implies that simultaneous events are always simultaneous in all reference frames. In contrast, the Lorentz transformation in the $\beta \ll 1$ limit, asserts the simultaneous events in one frame are are never simultaneous in any other reference frames.

[^0]: ${ }^{\ddagger}$ O. Heaviside, Electromagnetic theory, vol. I. The Electrician Publishing, 1893.

